Triptolide protects bone against destruction by targeting RANKL-mediated ERK/AKT signalling pathway in the collagen-induced rheumatoid arthritis
نویسندگان
چکیده
Rheumatoid Arthritis (RA) is a chronic autoimmune disease characterized by the inflammatory synovitis and the destructive cartilage and bone. Triptolide is a biologically active component purified from the Chinese herbal plant Tripterygium wilfordii Hook F (TWHF), which has presented benefits for the treatment of RA. In the current study, we investigated therapeutic effects of Triptolide in collageninduced rheumatoid arthritis rat model. Administration of Triptolide (30 μg/kg) was used to treat Collagen-Induced Arthritis (CIA) rat model by the subcutaneous injection of bovine type II collagen. Our data demonstrated the triptolide treatment significantly reduced inflammatory cytokines including IL-1β, TNF-α, IL-17 and IL-8 in serum in experimental rats. Results demonstrated that triptolide treatment reduced the expression of angiogenic activators Vascular Endothelial Growth Factor (VEGF), Toll-like receptor 2 (Tie2), Angiogenin-1 (Ang-1) and Angiogenin-2 (Ang-2) in synovial cells in experimental rats. Potential mechanism analyses triptolide treatment inhibited expression levels of receptor activator of NF-κB (RANK) ligand (RANKL), which further suppressed RANKL-induced expression and phosphorylation of ERK and AKT at protein levels. Histological analysis showed that triptolide treatment decreased immune cell infiltration and suppressed bone destruction that contributed to attenuation of arthritis severity in CIA rats. In conclusion, these results indicate that triptolide treatment not only inhibits inflammatory cytokines, but also possess anti-angiogenic effect in RA both in vivo and in vitro experiments through down-regulation of RANKL-mediated ERK/AKT signalling pathway, which contributes to understand molecular mechanism mediated by triptolide in the
منابع مشابه
Triptolide Prevents Bone Destruction in the Collagen-Induced Arthritis Model of Rheumatoid Arthritis by Targeting RANKL/RANK/OPG Signal Pathway
Focal bone destruction within inflamed joints is the most specific hallmark of rheumatoid arthritis (RA). Our previous study indicated that the therapeutic efficiency of triptolide in RA may be due partially to its chondroprotective and anti-inflammatory effects. However, its roles in bone destruction are still unclear. In this study, our data firstly showed the therapeutic effects of triptolid...
متن کاملIdentification of small molecule inhibitors of RANKL and TNF signalling as anti-inflammatory and antiresorptive agents in mice.
INTRODUCTION Inflammatory joint diseases such as rheumatoid arthritis are associated with local bone erosions and systemic bone loss, mediated by increased osteoclastic activity. The receptor activator of nuclear factor (NF) κB ligand (RANKL) plays a key role in mediating inflammation-induced bone loss, whereas tumour necrosis factor (TNF) plays a central role in the inflammatory process. Here ...
متن کاملTransglutaminase factor XIII promotes arthritis through mechanisms linked to inflammation and bone erosion.
Rheumatoid arthritis is a chronic inflammatory disease characterized by synovial hyperplasia, inflammatory cell infiltration, irreversible cartilage and bone destruction, and exuberant coagulation system activity within joint tissue. Here, we demonstrate that the coagulation transglutaminase, factor XIII (fXIII), drives arthritis pathogenesis by promoting local inflammatory and tissue degradati...
متن کاملInterleukin-21 promotes osteoclastogenesis in RAW264.7 cells through the PI3K/AKT signaling pathway independently of RANKL
Cytokines play a key role in the bone destruction of rheumatoid arthritis (RA). Interleukin-21 (IL-21) promotes osteoclastogenesis in RA in a receptor activator of nuclear factor-κB ligand (RANKL)-dependent way. Whether IL-21 is capable of promoting osteoclastogenesis directly in the absence of RANKL remains unknown. In the present study, we examined the osteoclastogenic activity of IL-21 in RA...
متن کاملDimethyl fumarate inhibits osteoclasts via attenuation of reactive oxygen species signalling by augmented antioxidation
Bone destructive diseases are common worldwide and are caused by dysregulation of osteoclast formation and activation. During osteoclastogenesis, reactive oxygen species (ROS) play a role in the intracellular signalling triggered by receptor activator of nuclear factor-κB ligand (RANKL) stimulation. Previously, we demonstrated that induction of antioxidant enzymes by Nrf2 activation using Nrf2-...
متن کامل